ZIPP MANUFACTURING

JAE21FE

Fast Electric Outrigger A Zippkits R/C Boat

Building Instructions

©2010 Zipp Manufacturing - Frankfort, New York 13340 www.zippkits.com

Toll Free (866) 922-ZIPP

1

The JAE 21 was designed and developed as a result of a joint venture between Rod Geraghty, David Hall, Ron Zaker Jr. & Martin Truex Jr.

The JAE 21FE is a slightly modified version of the same hull. Only the tub size was changed. All critical measurements are the same.

The main difference between this hull and all the others is the use of sharp edges on the bottom of the sponsons and tub, as opposed to curved surfaces. This helps break any surface tension of the water and makes for a faster boat.

This design approach has been built, developed and tested a great deal.

The JAE 21 (nitro) holds many speed records, and is currently the fastest boat in the world on the ¼ mile oval course (16.0 seconds/ 2 laps).

These records were broken by an expert boat racer named Kently Porter. KP has set some 35 records in the past, and currently holds 19. He knows what he is doing!

We asked Kently to write a few suggestions for building and running this kit...

"The thing that I want to impress the most is to build the kit as the manual shows! It is a good design, handles excellent (even at 84 mph) and has no bad habits. Don't try to second guess the designers! This hull is the absolute pinnacle of model hydro design. The reason that there are no adjustments on this hull is that it doesn't need any. That has all been done for you.

If you take your time and build a straight, true hull, you will have most of what it takes to win.

The rest is up to you. Make sure you have a reliable engine, and burn lots of fuel! Test different props. I like the Octura 1450 (cut down to 46mm) and the ABC H-7.

Get comfortable driving this hull. It is so fast (especially in the turns), it will scare you the first few times on the course.

You will learn that you can drive this hull in any lane you want, and rough "race" water is welcome!

Finally, make sure that you pay attention to the details. Everyone always asks what it takes to make a boat really fast. It's not one thing, it's hundreds of tiny details, all worked out and optimized. Try anything, if it gets better, keep going. If not, try something else."

Well said KP! We are reminded of what someone once asked: What can I buy to help me win more races? A case of fuel... While the above was written for the nitro version, the same holds true for the FE. The only way to get good is to practice, practice and practice more...

This boat is sized to also accept the Aquacraft UL-1 motor, ESC and battery.

This kit is not hard to assemble, as all of the hard stuff has been done for you. That is no excuse to do a poor job with assembly. The better you build this boat, the better it will run. Often the difference between an excellent building job and a poor one is a simple sanding block.

A note about overhangs:

This boat is designed to shear water and prevent any capillary action of water. To do this the tub, ski and sponsons have <u>rear</u> overhangs. These shear the water off and must be left in place and not rounded in any way.

Take the time to read this entire manual, so that you are familiar with all the buildings steps and their proper order. Take your time; make sure you understand everything before you do it and you will be rewarded with an impressive running hull...

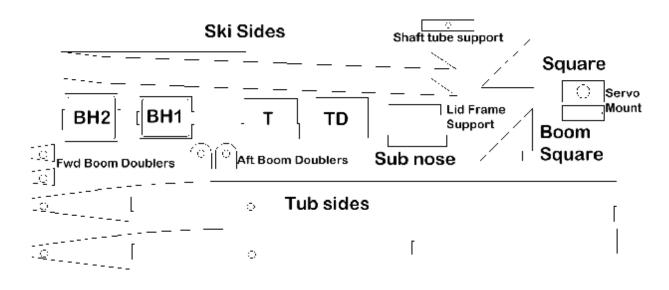
This kit is not a toy. Although R/C boating is a fun and rewarding hobby, it can be dangerous if not done with common sense and safety in mind. Just about anyone should be able to build this kit, but it should not be operated by children without close adult supervision.

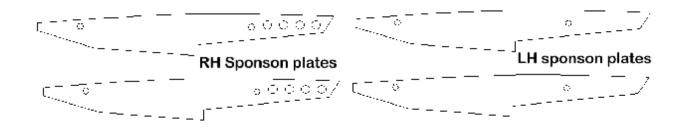
The manufacturer assumes no liability for damages or other loss in the use of this product, as we have no control over the construction or end use of this product.

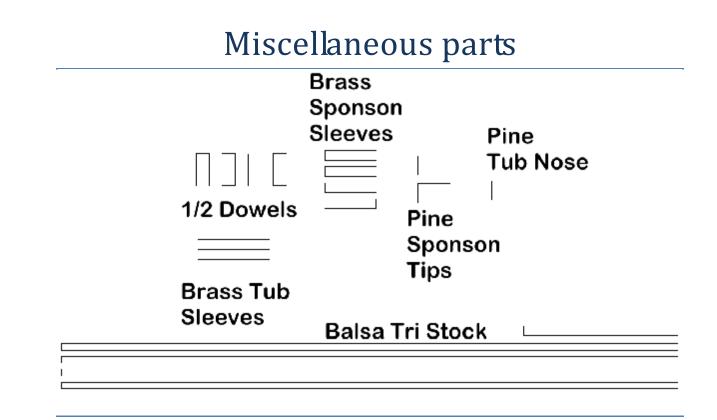
Tools and supplies needed to build

- § Sanding blocks with 80 and 150 grit paper
- § Drill with bits
- § Square
- § Flat file
- § FLAT Workbench
- § 1/2 ounce Medium CA glue and accelerator
- § Good quality 5 and 30 minute epoxy
- § Epoxy finishing resin
- § Spring clamps, paper clamps, c clamps, etc.
- § Razor blade or X-Acto knife
- § Masking tape
- § Waxed paper
- § Wood filler
- § Primer
- § Paint

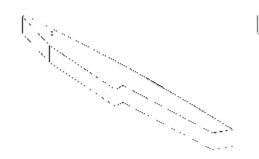
Additional items needed to complete

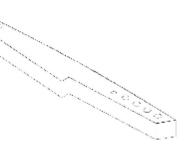

- § 36mm inrunner ot outrunner motor
- § .150 Collet for motor (Zipp 3492 for 5mm)
- § Electronic Speed Control
- § .150x 16 inch cable w/welded 3/16 stub shaft (Zipp 3486)
- § 4000-5000 4S1P motor battery
- § 4 cell receiver battery
- § 2 channel surface radio with 1 standard sized servo
- § Rudder pushrod (2-56 Size) (Zipp 3462)
- § 2-56 clevis (Zipp 3459)
- § 1 pushrod seal (Zipp 3404)
- § .187 strut (Zipp 3476 or Z21)
- § .187 drive dog (Zipp 3485)
- § Mod 1450 prop (Zipp 4008)
- § 10-32 Prop nuts (Zipp 3489)
- § Motor Mount (Zipp 3490/91)
- § Thrust bearing (Zipp 3493)
- § Cable grease
- § Rudder (Zipp 3483)
- § 12 inch length of 1/4 brass tubing (Zipp 3474)


Let's identify the parts so that we can easily find them when needed. Mark the parts that are inside other parts.


1/16 plywood parts:

Fwd Tub Bottom	Ski Aft Lid Frame
Aft Tub Bottom	()
Fwd Lid Frame 5	<u> </u>
Tub Top Fwd	Lid Aft Lid
Ski	
6	
6	
3	4
3	4


1/8 plywood parts



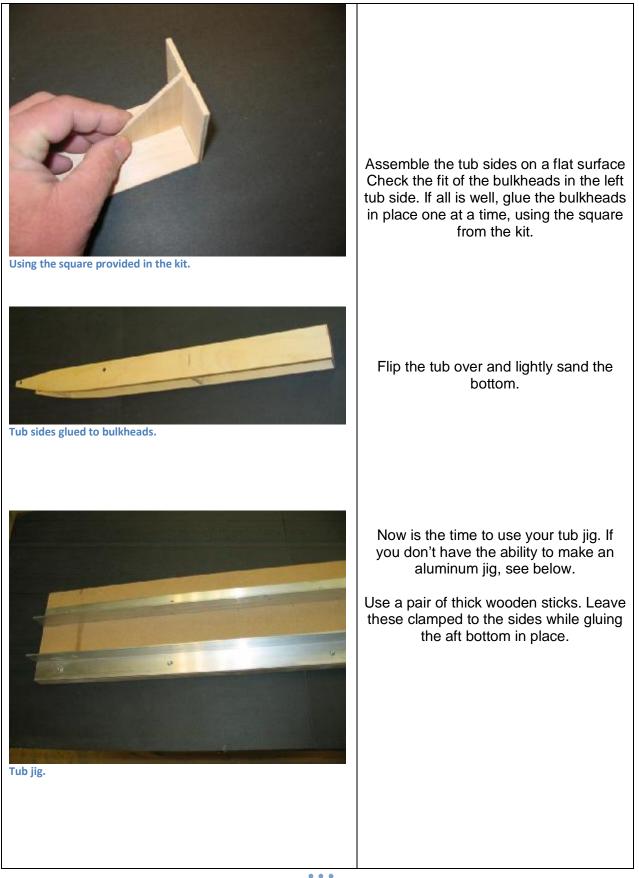
Foam parts

Right sponson has 6 holes

Left sponson has 2 holes

Do an inventory of all the parts, to be sure that everything is there. If anything is missing or damaged, contact us as soon as possible, so that we can get replacements to you quickly.

Tub Jig


We recommend that you make a jig for the tub.

This can be as simple as two straight pieces of $\frac{1}{2}$ to $\frac{3}{4}$ inch thick wood.

It can be as elaborate as 1/8 by 2 inch aluminum angle with adjustment slots for different tub widths.

Either way, you need something to clamp the tub sides to. Every critical component on this hull depends on a straight, square tub. Do whatever it takes to get it done correctly.

Tub sub nose being glued in place. Tub extends just past jig.

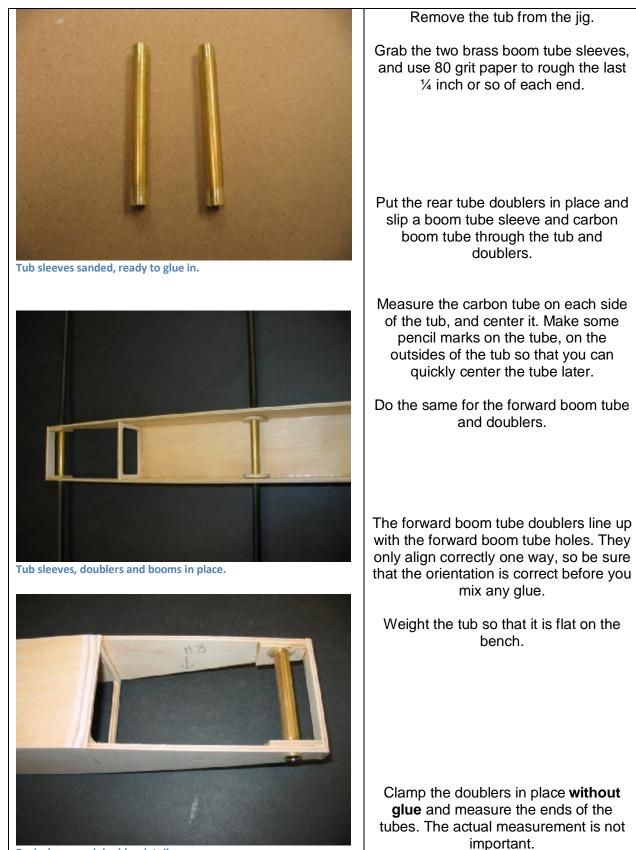
Waxed paper prevents one piece tub/jig assembly. 21FE shown.

TD being glued in place.

Put a layer of waxed paper over the jig.

Put the tub aft bottom in the jig and set the tub onto it.

Glue the tub sub nose to the very front of the tub. This supports the nose for sheeting, and provides a solid base for the tub nose block.


Using epoxy, glue the tub aft bottom in place. Make sure that the bottom extends to the front bulkhead. It should cover the full 1/8 inch bulkhead. Later on, we will sand this to match the angle of the tub sides. Leave a small overhang at the rear of the tub. Do not sand this off. The aft bottom sheet is pre cut to the

correct length. Make the front of this flush with the front of the first bulkhead, and the rear overhang will be correct.

Fully clamp the jig sides to the jig.

Glue in the transom doubler with epoxy. Make sure that it fits flat against the transom, and that it sits firmly on the tub bottom. Clamp until cured.

When the tub bottom has cured, lets move on to boom tube alignment. <u>This is the most critical step in the</u> assembly, so take all the time needed to <u>get this right.</u>

Fwd. sleeve and doubler detail.

13

Both ends of the tubes must be the

Measuring boom tube distance above flat bench.

Tub sleeves sanded flush with tub side.

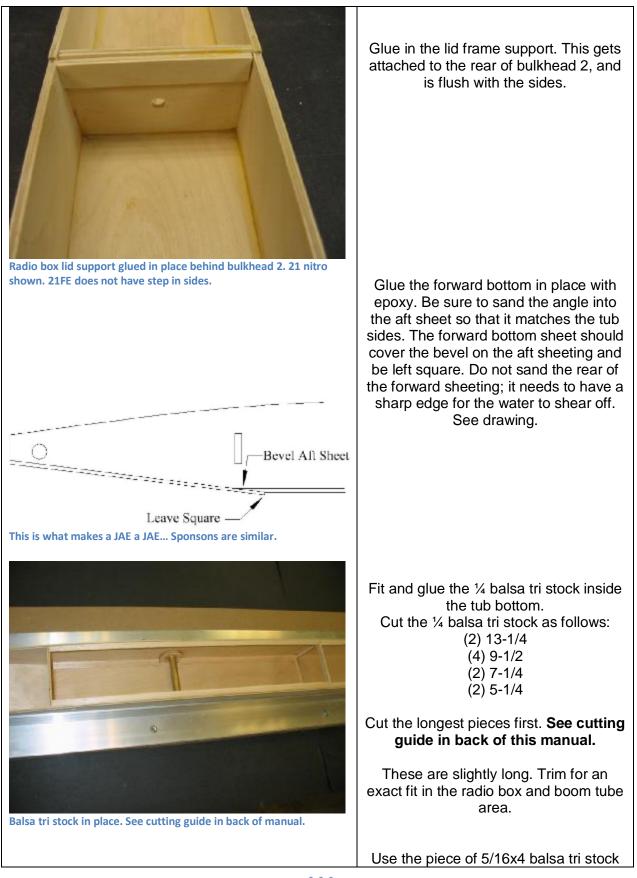
same distance from the bench.

If not, loosen the clamps and adjust the doublers until they are. If the doublers or holes now have to be sanded to fit, you must sand them and repeat the measuring process.

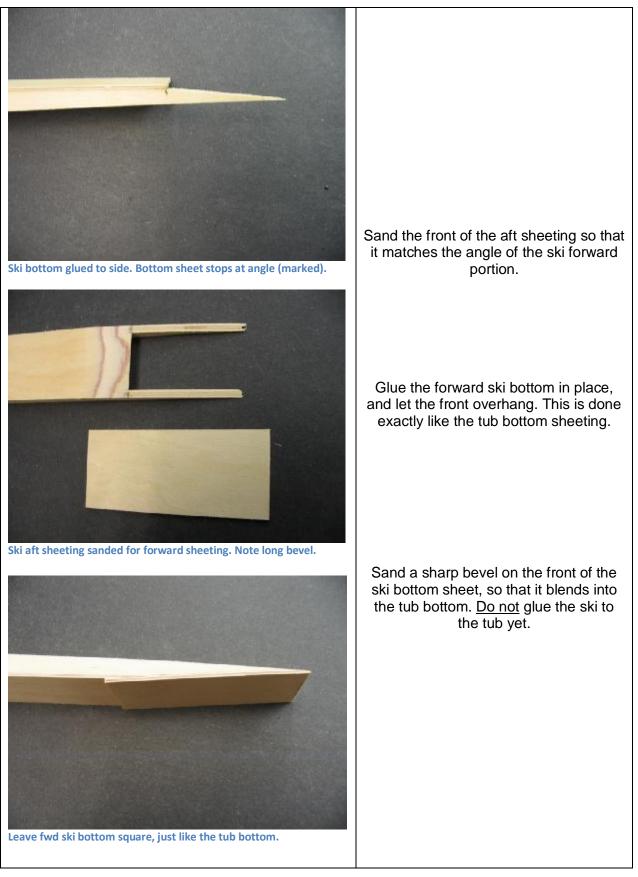
This is a critical step in the assembly, and if done incorrectly, your hull will never handle properly.

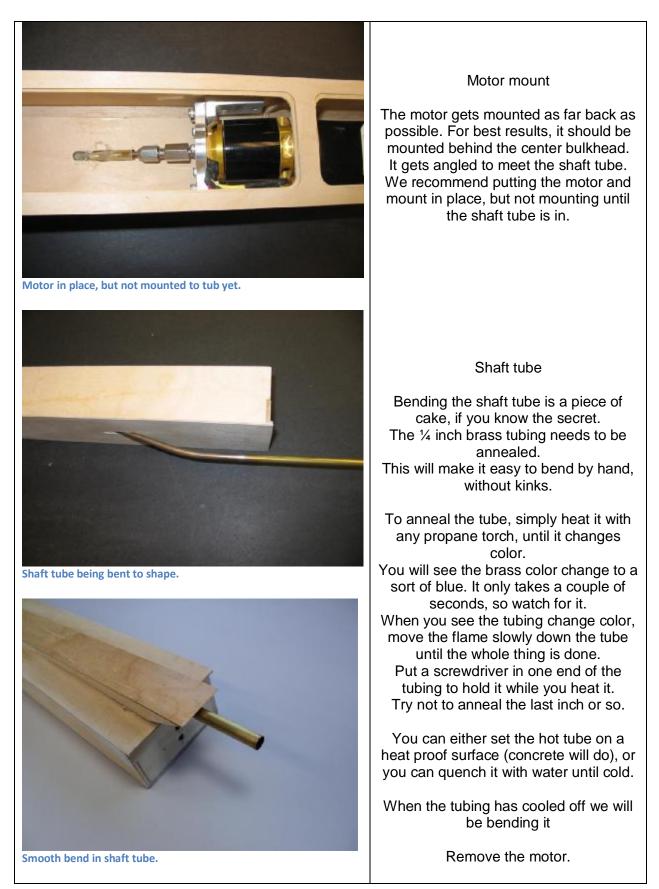
When you are happy with the height of the tubes above the bench, check to see that the tubes are square front to back with the boom square provided in the kit.

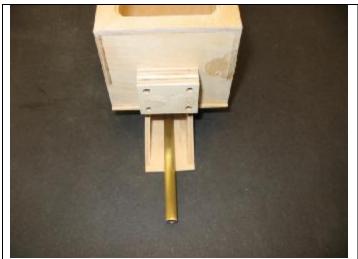
When you have checked and double checked that the boom tubes are straight and square to the world, remove the clamps, but leave everything in place.


Mix up some 30 minute epoxy, and coat the doublers where they will be in contact with the tub sides and bottom. Also coat the ends of the brass sleeves. Do not get any epoxy inside the sleeves...

Align and clamp in place. Quickly check your measurements and square several times, and make any tiny adjustments before the epoxy starts to cure.


Use any excess epoxy to build a small fillet around the sleeves and doublers. Clamp in place.


Set aside for at least 3 hours. Repeat for the front boom tubes. Be sure everything is perfect before you walk away...


Once everything has cured, sand the brass tub sleeves flush with the tub sides.

Shaft tube sitting on ski bottom. Spacer block not used with Z21 strut.

Shaft tube epoxied in place and cut to length.

Rudder pushrod hole marked on transom.

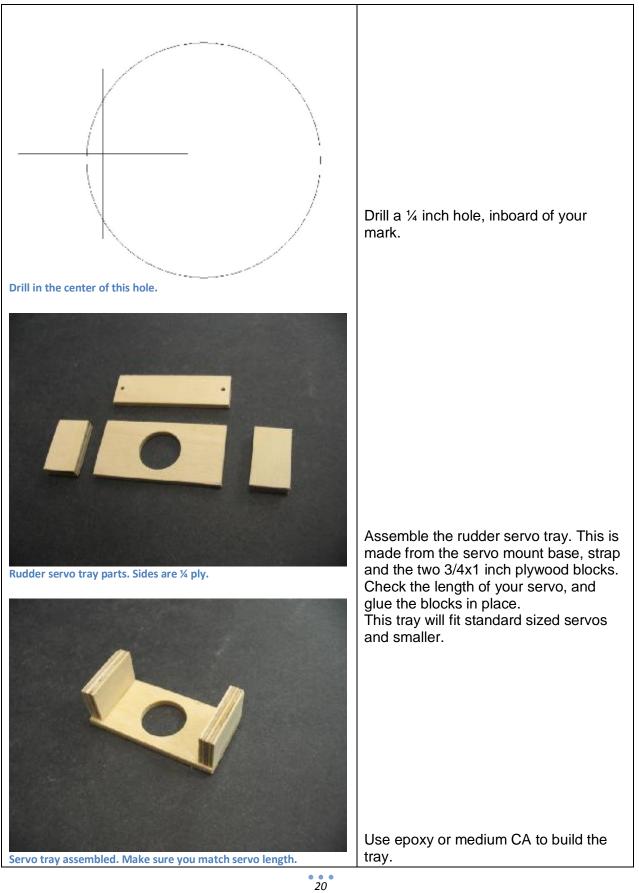
Put the shaft tube through the hole in the tub bottom.

Put the end that you didn't anneal towards the motor.

Take your time, and go a little at a time. If you try to rush it, and kink the tube, you will have to start over with a new tube.

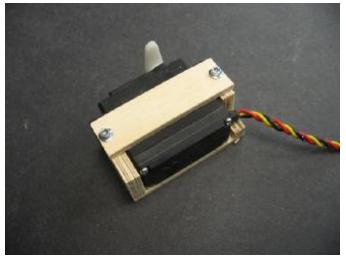
Tape the ski in place on the tub bottom.

The goal is to bend the shaft tube so that it matches the motor angle and sits flat on the rear of the ski bottom.

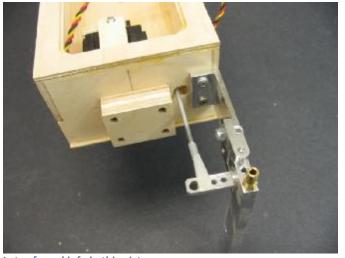

When you finish, you should have a nice bend that matches the motor collet, and continues past the rear of the boat (we will trim it later).

Glue the shaft tube in place with epoxy and filler (to thicken). Be sure to get inside and outside the tub. Allow to cure.

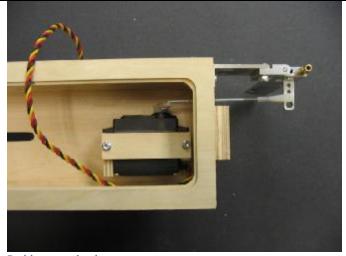
Align the motor, shaft and shaft tube and bolt the motor mount in place.


Servo

Bolt the rudder in place. This should be as far to the right as possible. Make a mark on the transom where the rudder pushrod will exit. Sight this from behind the boat. (see drawing).


Side trimmed for servo wire clearance,

Check the fit of the servo in the tray. You will have to cut a recess for the servo wire in one block. Make sure that the servo is a tiny bit taller that the mount, otherwise, the strap won't tighten the servo.


Use two servo screws (not supplied) to attach the strap.

Completed servo tray. Snappy!

Lots of good info in this picture.

Cut your 2-56 pushrod to length so that the rudder servo is about a half inch from the transom. Install your solder clevis or "Z" bend, attach the pushrod to the mounted servo, and put the pushrod through the hole you made.

Rudder servo in place.

Upper balsa tri stock glued in place.

Acid brush bent for "all up and under".

We like to use a steel clevis or "Z" bend on the servo end, and a threaded clevis on the rudder end. This allows you to adjust the pushrod length from outside the radio box.

Screw on the rudder clevis so that about 1/8 inch is inside the clevis (for adjustment), and attach it to the rudder control arm.

Make sure that the servo arm is straight up.

Glue the servo tray to the tub floor, adjusting the position of the tray so that the rudder is straight. Don't get any glue on the servo or wire. Allow to cure.

Remove everything from the boat in preparation for sealing.

Fit and glue the balsa tri stock to the top of the tub sides. Try to get them flush, or slightly above the sides.

Use epoxy finishing resin (or West Systems epoxy) to seal the inside of the tub. Be sure to seal around the boom tube sleeves, pushrod holes and all around the servo mounts. Use any excess epoxy to seal the ski (inside and out), as well as one side of the radio box top. Set these on waxed paper while they cure.

Use a metal acid brush, bent near the bristle end to seal the upper part of the inside of the tub.


Allow to cure overnight.

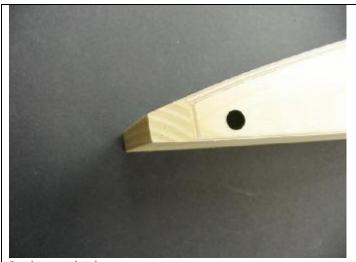
Forward and aft lid framed "keyed" to each other.

Tub top in place. Note that it is centered on radio box lip.

Sand the top of the tub, so that the sheeting has a flat surface for gluing.

Glue the aft lid frame in place. This frame provides the "lips" for the radio box lid.

This frame sits on the support glued to the back of bulkhead 2.


Glue the forward lid frame in place. This frame "keys" into the aft lid frame. Be sure that the forward lid frame is square with the tub, and use tape to hold in place.

Allow to cure.

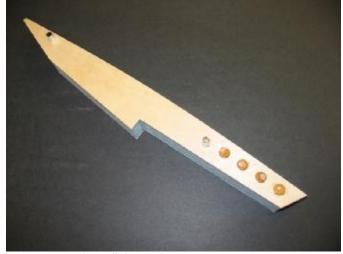
Sand the frame, and glue the tub top sheeting in place with 30 minute epoxy. Make sure that the sheeting is flush with the transom and is centered. Look at the "lip" all around the radio box and forward compartment. Make sure that they are centered as well. Tape and weight until cured.

Once the top sheeting has cured, sand the front of the tub flat and square. Glue the pine tub nose block to the front of the tub.

23

Shape the block to match the tub.

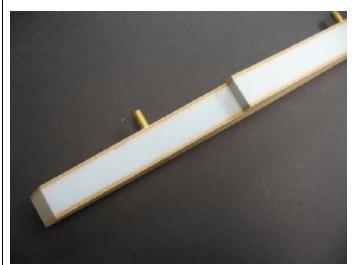
Finish the nose block with a round, blunt nose.



Nice and blunt.

Sponsons

The sponsons are assembled in a specific order for a reason. It is not the fastest way, but it's the only way it can be done right.



Right sponson does all the work...

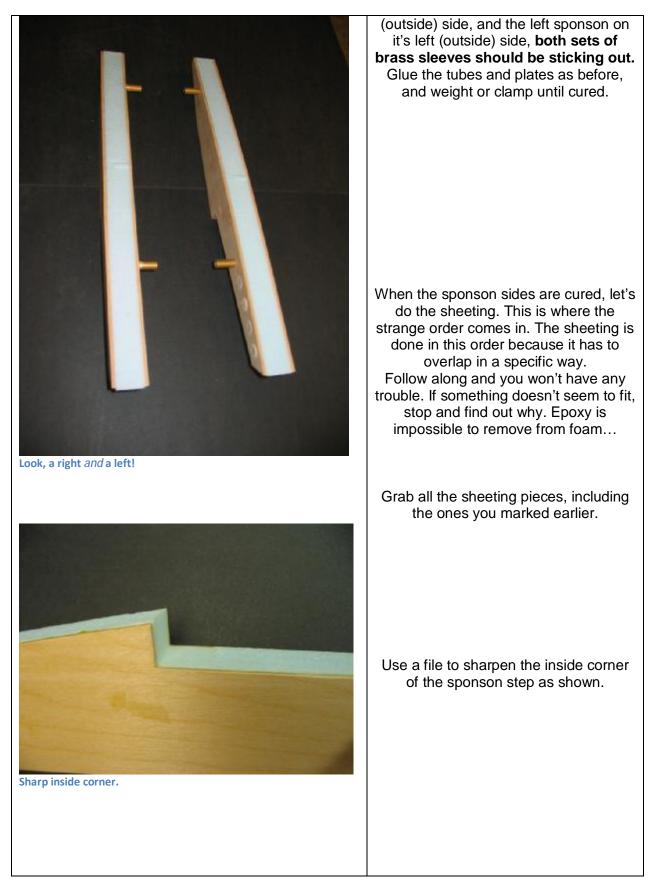
Be sure to make a right and left sponson...

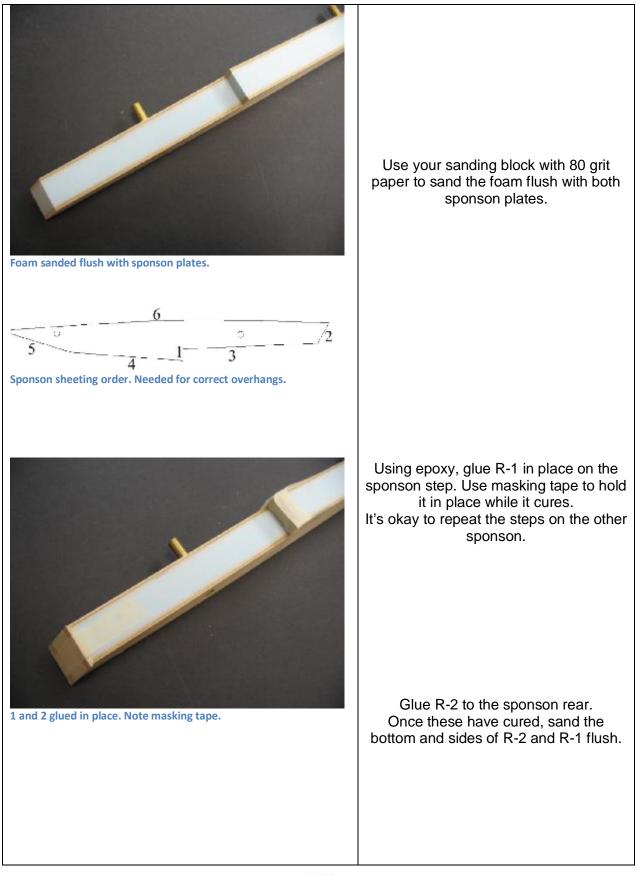
Sponson sleeves in place.

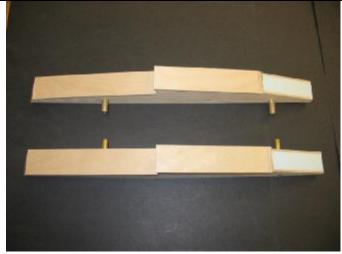
Gather all of the parts for the right sponson.

The right sponson holds the turn fin, so it has dowels in it, Grab the right foam sponson.

Test fit the ½ inch wood dowels in the 4 rear holes. Also test fit the 2 brass tubes. They should be a nice fit. Prepare the sponson inside and outside plates by lightly sanding the edges.


Mix up some 30 minute epoxy, and coat the inside of the sponson plates. Also put some epoxy on the brass boom tube sleeves. Shove the tubes in until they stick out the other side. We don't want any epoxy to get into the boom tube sleeves. Do the same for the 4 wood dowels. Put the inside plate in place, being sure that the tubes and dowels protrude on the other side. They should all stick up above the side plates. Work quickly.


Put the other sponson plate in place, aligning the brass sleeves and dowels. Make sure that the sleeves and dowels go through both sponson plates. The tubes and dowels should protrude through, and be flush with the outside plate


Use tape and small weights to hold the sponson and allow to cure on waxed paper.

While the right sponson is curing, you can glue the left sponson. Everything is the same, except the left sponson has only the two tubes. *Make sure that the left sponson is a mirror image of the right*

With the right sponson on it's right

3 and 4 in place, with overhangs.

Note sharp bevel for 5. Just like tub and ski.

Sponson sheeted.

Glue R-3 in place, leaving equal overhang on both sides*, and an overhang on the rear.

Glue R-4 with equal overhang on the sides*, and leave an overhang in the rear.

Note that the bottom overhangs don't get sanded off if you plan to use a low power motor.

*If you are using a high performance motor, glue the bottom sheets so that all of the overhang is on the outside of the sponson, opposite the sponson tubes. This will make it much easier to sand them off.

Once R-4 is cured, sand the front of R-4 flush with the forward bottom. This is exactly like the forward tub bottom. Do not round any corners.

Glue R-5 in place with equal side overhang. Match the rear to just cover the bevel you sanded in R-4. Leave the rear of this square, just like the tub bottom.

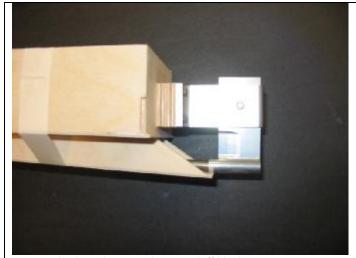
Sand the top of R-2, and glue the sponson top on (R-6).

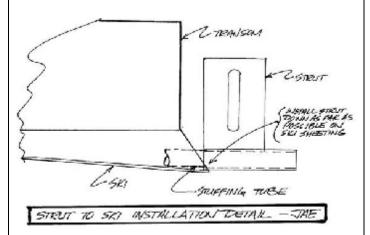
28

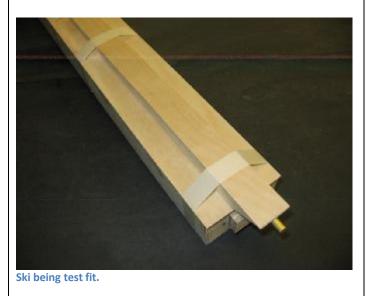
Pine sponson nose block in place.

When cured, sand the front until it is flat and square. Glue the pine sponson tip in place with epoxy.

When cured, sand the nose block to a nice blunt tip. Also sand the top sheeting, R-2 and the tips flush with the sides. Do not sand off the <u>side</u> overhang on the sponson bottom unless you are using a high power motor.


Nose rounded.


Taper side overhangs to nothing at the nose.


For the bottom sheeting at the nose, taper the bottom sheet so that there is no side overhang at the nose block.

If you have not done so, repeat on the other sponson.

Strut cut back, and mounted on standoff blocks.

Strut

Mount your strut to the transom using center marks to align it. Make it so that when the strut is in the middle of its travel, the bottom of the strut is about ³/₄ inch below the tub bottom. You may have to adjust the shaft tube some more.

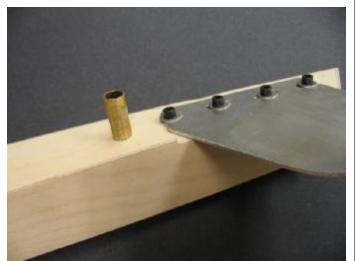
Note that we used two ¼ inch blocks to space the strut back.

If using the Zipp Z21 strut, the spacer block is not needed.

The strut needs to be at the very bottom of the ski for the proper propeller depth. See drawing below and trim the front of the strut if needed.

Test fit the ski to the tub. The rear of the ski should line up with the rear of the transom, and the front should blend into the tub bottom. Sand the front of the ski sheeting so that it blends to nothing. Be sure the shaft tube is just touching the ski sheeting, and level with the tub bottom. Measure from both sides and make small alignment marks for the ski.

Using 30 minute epoxy, seal the bottom of the tub in the area of the ski, and epoxy the ski in place. Be sure that the inside of the ski is sealed with epoxy. Tape and weight the ski, check alignment, and allow to cure.



Turn Fin

Sharpen the outside of the turn fin.

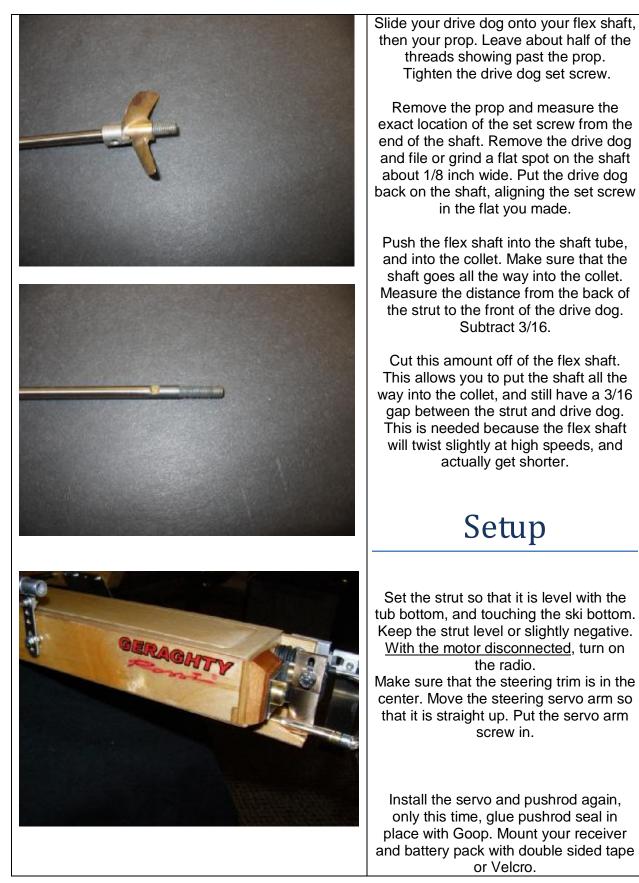
Mark the center of the turn fin dowels. Drill 3/32 pilot holes on your marks.

Turn fin mounting.

Note bottom sheet overhang sanded off under turn fin.

Attach the turn fin with the supplied sheet metal screws and washers.

If you have a bottom overhang on the sponson, sand it flush where the fin contacts it.


Note that you can later fine tune the fin with the oversized, slotted holes.

Remove the turn fin in preparation for finishing.

Finishing

Sand the tub and sponsons, but be sure to leave the overhangs. Fill any holes or imperfections with wood filler. Sand everything with 150.

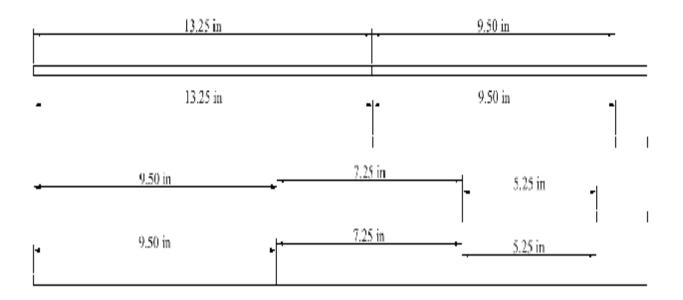
Mount the rudder and attach the pushrod. Screw the clevis in or out to center the rudder. Check for correct rudder movement.

Mount your switch through the lid with a waterproof switch cover.

Make sure your prop is sharpened and balanced.

Grease the flex shaft with cable grease or high quality marine grease. Install the flex cable.

Running


It's better to start with a small prop and check the battery/motor/ESC temp before going larger.

The main thing is to get the boat running smoothly and turning well. After that, try different props. For a bunch of help tuning and running, go to some of the R/C boating web sites. One of the most popular is RumRunner Racing (www.rumrunnerracing.com)

Good luck and happy boating!

Balsa tri stock cutting guide.

From the 4 pieces of ¼ tri stock, cut as shown.

Additional information

Rum Runner Racing Website www.rumrunnerracing.com

Excellent forum for information on electric powered boats

Enerland PolyQuest Batteries www.enerland.com

Excellent source for the most current (${f J}$) battery packs

South River R/C Boats www.southriverrcboats.com

Source for just about anything you will need for a fast electric boat